Double shuffle relations for multiple Dedekind zeta values

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double shuffle relations of double zeta values and the double Eisenstein series at level N

In their seminal paper, Gangl, Kaneko and Zagier defined a double Eisenstein series and used it to study the relations between double zeta values. One of their key ideas is to study the formal double space and apply the double shuffle relations. They also proved the double shuffle relations for the double Eisenstein series. More recently, Kaneko and Tasaka extended the double Eisenstein series ...

متن کامل

Shuffle Product Formulas of Multiple Zeta Values

Using the combinatorial description of shuffle product, we prove or reformulate several shuffle product formulas of multiple zeta values, including a general formula of the shuffle product of two multiple zeta values, some restricted shuffle product formulas of the product of two multiple zeta values, and a restricted shuffle product formula of the product of n multiple zeta values.

متن کامل

Double Shuffle Relations of Special Values of Multiple Polylogarithms

In this paper we shall study the special values of multiple polylogarithms atmth roots of unity, called multiple polylogarithmic values (MPVs) of depth m. These objects are generalizations of multiple zeta values and alternating Euler sums. Our primary goal is to investigate the relations between the special values by using (extended) double shuffle relations. In particular we want to know for ...

متن کامل

Higher Order Shuffle Regularization for Multiple Zeta Values

We study the higher order shuffle regularization for multiple zeta values and define higher order regularized shuffle relations. We find that higher order regularized shuffle relations can be deduced from the group-like property of the Drinfel’d associator.

متن کامل

An exotic shuffle relation for multiple zeta values

In this short note we will provide a new proof of the following exotic shuffle relation of multiple zeta values: ζ({2}x{3, 1}) = ( 2n+m m ) π (2n+ 1) · (4n+ 2m+ 1)! . This was proved by Zagier when n = 0, by Broadhurst when m = 0, and by Borwein, Bradley, and Broadhurst when m = 1. In general this was proved by Bowman and Bradley. Our new idea is to use the method of Borwein et al. to reduce th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2017

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa7945-8-2016